Tevatron Since May 1 and Future Plans

Vladimir Shiltsev for the Tevatron Department

1. Introductory remarks: May 1st vs August 1st

2. Tev issues/studies: Beam-beam effects

Instabilities

Losses/Background

Tevatron Luminosity in 2002

record L stores

	May'02 #1289-1337	July'02 #1501-1594	Δ , %	#1303	#1583	Δ, %
N_p, e9	6260	6375	+1.8	6075	6300	+3.7
N_a, e9 Out AA,mA-	410	486	+11.7	486 103	530 116	+9.1 +12.6
E_eff,π	20.7	19.7	-4.8	21.5	15.8	-26.3
L, e30	17.6	20.9	+18.6	19.6	26.4	+35.4

 \rightarrow major factor affecting L is emittance, then pbar intensity (more due to larger stack than due to better xfer efficiency)

Illustration of losses: record L=26.4e30 store #1583

Is Tevatron more friendly to p- and pbar-beams?

Step loss	May'02 #1289-1337	July'02 #1501-1594	Δ	
Pbar @ 150	18.3%	16.4%	-1.9%	
Pbar on ramp	11.6%	11.8%	+0.2%	
Pbar squeeze	4.1%	9.6%	+5.5%!	
Protons @ 150	16.3%	15.4%	-0.9%	
P's on ramp	6.4%	11.6%	+5.2%!	

^{*} numbers for record stores are similar

Tevatron issues (in scale):

Beam-beam effects

N_p effect Emittance+aperture effects Tune, κ, C_v,h, orbit effects Lifetime in collisions

Instabilities

Coherent transverse and longitudinal Incoherent transverse and longitudinal

Detector backround

Losses due to vacuum and DC beam

Beam-Beam #1: N_p effect

- * pbar losses depend on proton intensity:
- without protons pbar loss in Tev is <10% 9 (total)

Store	N_p, e9	Out of AA, mA	Loss at 150	Loss on ramp		Pbars at low-beta	L, e30
1303	6070	103	16.4%	11.6%	3%	476	19.5
1289	6990	105	18%	20%	11%	387	19.6

+protons are less stable at high N_p , blow-up pbar ϵ_x ,

- we do not force higher N_p until dampers installed (Jim Steimel, C.-Y. Tan) Oct '02
- continue beam-beam vs N_p studies (T.Sen) -2 mos

Beam-Beam #2: Emittance/Aperture effect

- our understanding of 150 GeV pbar issues was:

pbars are too close to protons ($\sim 4\sigma$) which work as "soft collimator", but physical aperture at C0 Lambertson is tight, too. Options: increase separation (tilting helix), reduce sigma, increase aperture, inject faster. We tried the first approach without big success and recently found that smaller ε do not help much (yet).

- store 1583, large emittance variation in pbar train

- our plans concerning this effect are:
 - 1. reduce pbar emittance dilution at injection by doing beter closure (BLT work, Jerry and Vic) and optimizing A1 line (Valery, D.Johnson) -few mos
 - 2. fix inj-"bumper" which kicks p's (Bruce) ASAP
 - 3. built injection dampers (J.Steimel, C.Y.Tan) –5mos
 - 4. replace C0 Lamberson magnets with MI dipoles to double vertical aperture (1"→2") and allow larger separation at 150 GeV (P.Garbincius, Bruce) next big shutdown (Oct? Jan?)
 - 5. study possibilities of changing optics and improve minimal beam-beam separation (Aimin Xiao, Valery, Yuri, John Johnstone) in ½ year
 - 6. finish SyncLite commissioning (Cheung) –1-2mos
 - 7. continue attempts to develop a tracking code with some descriptive and predictive power (T.Sen, M.Xiao, B.Erdelyi, SLAC guys) 1 year(?)

Beam-Beam #3: Effects of Q_x,y, coupling, C_v,h, orbits

- numerous observations point to importance of keeping p(and pbar) tunes near "good" tunes of Q_x,y=0.575/0.583 (within about +- 0.002) otherwise losses become high
- tunes are affected by coupling and orbit deviations from a "silver orbit"
- smaller chromaticity $C_v,h \rightarrow smaller losses$, so we try to keep chromaticities as low as possible without allowing beam to go unstable
- now, the problem is that nothing is stable: a) chromaticities (b_2 in dipoles) depend time at 150 GeV due to persistent currents and we compensate that by slowly varying currents in sextupole circuits (Run I); b) new in Run II tunes and coupling vary similarly (! see Figs);

c) orbits drift at the rate about 1 mm/sqrt(month) (- see Figs) and we regularly smooth them – the procedure is very time consuming (parsing) but worthwhile.

• issues to address:

- 1. drifts of tunes and coupling will be compensated (Mike M and Jerry) in 1-2 wks
- 2. new p and pbar Schottky detectors at E17 (RFI)– next shutdown
- 3. on-line tune stabilization feedback like in RHIC (??, BNL??) in ½-1 year
- 4. redo C v,h jump compensation (Tev) –TBD
- 5. McGinnis C_v,h technique (Dave+Jerry) –soon
- 6. differential chromaticity for p and pbars (Yuri)– if necessary.

Beam-Beam #4: Luminosity lifetime (anticorrelates with L)

Luminosity and L-lifetime in the first 2 hrs of the store

• either problem with pbar beam size and losses

→ different bunch dynamics (store 1580)

- ... or, in the last 4 stores #1583-1612 τ_L was <7
 hours (early in store) due to poor proton lifetime, tune
 optimization did not help → longitudinal shaving?
- our future steps concerning lifetime:
 - 1. goal = bring lifetime back to Run I value of 9-10 hrs in the first 2 hours, and >15 afterward
 - 2. explore larger helix separation: T.Sen studies suggest significant lifetime improvement even with 10-15% helix increase (TeV) few mos
 - 3. optimize tunes for most of bunches (TeV) ASAP
 - 4. continue studies of Beam-Beam Compensation with TEL (BBC project group) ongoing; build the 2nd TEL? (1 year)

Tevatron Collision Helix

Instabilities #1: Coherent: a) transverse

• occurs on ramp, 980, squeeze, collisions (see #1368)

Signatures:

- hor or vert Schottky power goes way up
- p-emittance goes up (from 25 to 30-35 pi)
- pbar emittance goes up (25-30 to 45-80 pi)
- severe since after May 21 (?)

Facts:

- a) depends on proton intensity (often observed at N_p > 5800...7500e9)
- b) occurs at 150, ramp, 980 GeV
- c) can be suppressed by increase of C_v ,h (not always)
- d) can be eased by changing coupling SQ or/and tunes (not always)
- e) seems to be single bunch phenomena
- f) sometimes one of higher order SB lines goes coherent
 - → (higher SB-mode) "weak" head-tail in x-y coupled motion of high intensity p-beam

Coherent: b) longitudinal at 980 (see #1368)

* results in higher background rate and more DC beam

"~Facts" about the sigma s blow-up:

1. 8 events in 12 stores in May'02, intensity dependent

A B	\mathbf{C}	D	${f E}$	-	F G	1	H
1302 8 May 230	170e9	2.0ns	2.3 ns	60 min	42hrs	67hrs	bad
1305 9 May 190	167e9	2.0ns	2.3ns	6 min	12hrs	43hrs	bad
1307 10May 180	179e9	2.0ns			53hrs		good
1309 11May 130	171e9	2.0ns			42hrs		good
1313 12May 060	176e9	2.0ns			40hrs		good
1328 16May0200	186e9	?	?	?	? bad. SE	BDMS dat	a not recor
1329 16May1800	176e9	1.9ns	2.2ns	3 min	??	77 hrs	really bad
1332 17May1930	178e9	1.9ns	2.4ns	6 min	9hrs	83 hrs	really bad
1333 18May 173	181e9	2.1ns			50hrs		good
1335 19May1200	177e9	2.0ns	2.2ns	39 min	40hrs	59 hrs	s bad
1337 20May0540	183e9	2.0ns	2.2ns	16 min	19hrs	56 hrs	bad
1340 21May0200	194e9	2.0ns	2.6ns	2 min	?	? r	eally bad

A – store, date, time; B- total N_p; C, D- sigma_s before and after the blow-up; E- time in the store; F, G- $d\sigma/dt$ before and after, H-comment

- 2. the blow-up occurs not in all bunches
- 3. recently commissioned bunch-by-bunch longitudinal damper (J.Steimel, C.Y.Tan) solved the issues (no blow-up in 6 stores #1569-1595 with the damper ON see below and there was double blowup in yesterday's store #1612 when the damper was OFF)

Coherent: c) "dancing" (un)coalesced bunches

• intensity dependent, large amplitudes (>1 rad at 150 GeV), slowly decohere, depends on bunch position, bunches are weakly coupled

Instabilities #2: Incoherent(?):

- a) bunch length growth during store: we had two dedicated stores with 3 trains of different intensity bunches (60e9/bunch to about 200e9/bunch) and inboth stores observed NO dependence of *d sigma_s/dt* on bunch intensity (V.Shiltsev, S.Danilov ORNL)
- b) but SDA data analysis shows exactly opposite in many regular HEP stores (Paul Lebrun) --??
- c) Wolfram Fischer of BNL has analyzed proton loss on ramp in after-shutdown stores (>12%) and concluded that it's due to large chromaticity tune modulation (dQ=C dp/p ≈ 0.02)- see Tev-Note-2002/12. Recently, we performed direct check with 3 different intensity but same dp/p bunches and observed different %-losses → the loss is either intensity dependent or, more likely, dependent on transverse emittance

- Action items concerning instabilities:
 - 1. build and install transverse bunch-by-bunch dampers to increase proton intensity and (possibly) reduce tev chromaticity (J.Steimel, C.Y.Tan) 2 mos
 - 2. build diagnostics to observe higher-order head-tail modes in betatron motion (SyncLite? Short pick-up? RFI) 3 mos
 - 3. explore longitudinal bunch-by-bunch damper operation at 150 GeV (ramp? C.Y.Tan) 1 month
 - 4. develop theoretical model of "dancing" bunches (V.Balbekov, V.Lebedev, G.Stupakov/SLAC) ??
 - 5. further experimental studies of the TeV RF noise (Gennady and Tamir of TD, J.Reid) 6 mos
 - 6. futher experimental studies of d sugma_s/dt and loss on ramp (Tev group)

Detector background/Losses:

• F11 ferrite outgassing → losses

- The effect was used to estimate average Tev vacuum ≈1.5e-9 Torr (R.Moore, V.Shiltsev)
- Fixed during June shutdown (Bruce+Mech.Support)
- outgasing experiments during shutdown allowed to estimate vacuum in the B0 and D0 P≈5e-9 Torr (Ron, Bruce) – order(s) of magnitude better than thought before
- Alvin et.al have separated different types of losses during collisions: (gas:Rf bucket:luminosity)=(4:2:1)
- a simple experiment with periodically varied TEL current confirmed that amount of the DC beam grows with time in store (V.Shiltsev, Alvin)
- (...detectors complain a bit less than before... are they happy with just luminosity?)

- we plan to:
 - a) continue vacuum improvement (Bruce, Rosenberg/ANL) next shutdown and later
 - b) continue parasitic studies of losses (Alvin, Tev) ongoing
 - c) develop better loss model and justify/optimize collimation system (N.Mokhov, S.Drozhdin, Lyudovic, Valery L., Ron, Alvin, etc.) expect breakthru in 3 mos.